Numerical Blow-Up Time for a Semilinear Parabolic Equation with Nonlinear Boundary Conditions

نویسندگان

  • Louis A. Assalé
  • Théodore K. Boni
  • Diabate Nabongo
چکیده

We obtain some conditions under which the positive solution for semidiscretizations of the semilinear equation ut uxx − a x, t f u , 0 < x < 1, t ∈ 0, T , with boundary conditions ux 0, t 0, ux 1, t b t g u 1, t , blows up in a finite time and estimate its semidiscrete blow-up time. We also establish the convergence of the semidiscrete blow-up time and obtain some results about numerical blow-up rate and set. Finally, we get an analogous result taking a discrete form of the above problem and give some computational results to illustrate some points of our analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Blow-up of Semilinear Parabolic PDEs on Unbounded Domains in ℝ2

We study the numerical solution of semilinear parabolic PDEs on unbounded spatial domains in R2 whose solutions blow up in finite time. Of particular interest are the cases where = R2 or is a sectorial domain in R2. We derive the nonlinear absorbing boundary conditions for corresponding, suitably chosen computational domains and then employ a simple adaptive time-stepping scheme to compute the ...

متن کامل

Blow-up analysis for a semilinear parabolic equation with nonlinear memory and nonlocal nonlinear boundary condition

In this paper, we consider a semilinear parabolic equation ut = ∆u + u q ∫ t 0 u(x, s)ds, x ∈ Ω, t > 0 with nonlocal nonlinear boundary condition u|∂Ω×(0,+∞) = ∫ Ω φ(x, y)u (y, t)dy and nonnegative initial data, where p, q ≥ 0 and l > 0. The blow-up criteria and the blow-up rate are obtained.

متن کامل

Blow-up at the Boundary for Degenerate Semilinear Parabolic Equations

This paper concerns a superlinear parabolic equation, degenerate in the time derivative. It is shown that the solution may blow up in finite time. Moreover it is proved that for a large class of initial data blow-up occurs at the boundary of the domain when the nonlinearity is no worse than quadratic. Various estimates are obtained which determine the asymptotic behaviour near the blow-up. The ...

متن کامل

Some Blow-Up Problems For A Semilinear Parabolic Equation With A Potential

The blow-up rate estimate for the solution to a semilinear parabolic equation ut = ∆u+V (x)|u|p−1u in Ω×(0, T ) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x, 0) = Mφ(x) as M goes to infinity, which have been found in [5], are improved under some reason...

متن کامل

Numerical Blow-Up of Nonlinear Parabolic Integro-Differential Equations on Unbounded Domain

We study the numerical solution of semilinear parabolic integro-differential PDEs on unbounded spatial domains whose solutions blow up in finite time. We first introduce the unified approach to derive the nonlinear absorbing boundary conditions for one-dimensional and two-dimensional domains, then use the fixed point method to achieve a simple but efficient adaptive time-stepping scheme. The th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008